Automation Techniques for Intelligent Environments - Prediction of Building Activity Patterns Using a Cyclic Genetic Algorithm
نویسندگان
چکیده
This work involves learning the use schedule of an academic building in order to intelligently control various aspects of the environment. Motion sensors are used to monitor and record the activity of each of the rooms in the building. After a basic preprocessing of the data, a Cyclic Genetic Algorithm (CGA) is used to pick out the patterns of use of the rooms. The CGA is seen as ideal for such a problem because of its ability to find repetitive cyclic patterns in the data. Our results show that a CGA has the ability to pick out such patterns and construct a schedule of use for a room.
منابع مشابه
Intelligent prediction of heating value of coal
The gross calorific value (GCV) or heating value of a sample of fuel is one of the important properties which defines the energy of the fuel. Many researchers have proposed empirical formulas for estimating GCV value of coal. There are some known methods like Bomb Calorimeter for determining the GCV in the laboratory. But these methods are cumbersome, costly and time consuming. In this paper, m...
متن کاملQSAR studies and application of genetic algorithm - multiple linear regressions in prediction of novel p2x7 receptor antagonists’ activity
Quantitative structure-activity relationship (QSAR) models were employed for prediction the activity of P2X7 receptor antagonists. A data set consisted of 50 purine derivatives was utilized in the model construction where 40 and 10 of these compounds were in the training and test sets respectively. A suitable group of calculated molecular descriptors was selected by employing stepwise multiple ...
متن کاملA Novel QSAR Model for the Evaluation and Prediction of (E)-N’-Benzylideneisonicotinohydrazide Derivatives as the Potent Anti-mycobacterium Tuberculosis Antibodies Using Genetic Function Approach
Abstract A dataset of (E)-N’-benzylideneisonicotinohydrazide derivatives as a potent anti-mycobacterium tuberculosis has been investigated utilizing Quantitative Structure-Activity Relationship (QSAR) techniques. Genetic Function Algorithm (GFA) and Multiple Linear Regression Analysis (MLRA) were used to select the descriptors and to generate the correlation QSAR models that relate the Mi...
متن کاملPrediction of Driver’s Accelerating Behavior in the Stop and Go Maneuvers Using Genetic Algorithm-Artificial Neural Network Hybrid Intelligence
Research on vehicle longitudinal control with a stop and go system is presently one of the most important topics in the field of intelligent transportation systems. The purpose of stop and go systems is to assist drivers for repeatedly accelerate and stop their vehicles in traffic jams. This system can improve the driving comfort, safety and reduce the danger of collisions and fuel consumption....
متن کاملPredicting Unconfined Compressive Strength of Intact Rock Using New Hybrid Intelligent Models
Bedrock unconfined compressive strength (UCS) is a key parameter in designing thegeosciences and building related projects comprising both the underground and surface rock structures. Determination of rock UCS using standard laboratory tests is a complicated, expensive, and time-consuming process, which requires fresh core specimens. However, preparing fresh cores is not always possible, especi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012